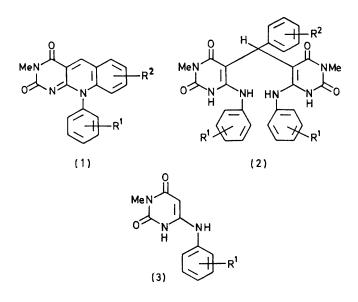
A New, General, and Convenient Synthesis of 5-Deazaflavins (5-Deazaisoalloxazines)


Tomohisa Nagamatsu, Yuko Hashiguchi, Masatsugu Higuchi, and Fumio Yoneda* Faculty of Pharmaceutical Sciences, Kumamoto University, Oe-honmachi, Kumamoto 862, Japan

The condensation of 6-substituted-aminouracils with *o*-halogenobenzaldehydes in dimethylformamide led to the formation of the corresponding 5-deazaflavins in a single step.

5-Deazaflavins (5-deazaisoalloxazines) have been studied extensively in both enzymatic¹ and model systems² to provide mechanistic insight into flavin-catalysed reactions. They have aroused further interest because of the recent discovery that coenzyme F_{420} from methanogenic bacteria possesses the 8hydroxy-5-deazaflavin moiety.³ Moreover, our findings that the oxidation of alcohols under alkaline conditions by 5deazaflavins yields the corresponding carbonyl compounds⁴ and that the reduction of carbonyl compounds by 1,5-dihydro-5-deazaflavins yields the corresponding alcohols in the presence of strong proton sources⁵ have prompted us to prepare a great variety of 5-deazaflavins in order to pick out the more efficient oxidizing or reducing agents.

5-Deazaflavins have previously been prepared by (a) the condensation of anthranilaldehydes with barbituric acid,⁶ (b) the cyclization of 6-(N-alkylanilino)uracils with one-carbon reagents including the Vilsmeier reagent,⁷ (c) the condensation of 6-chloro-5-formylpyrimidines with N-alkylanilines,7 and (d) the oxidative cyclization of arylbis(6-substituted-amino-3methyluracil-5-yl)methanes with diethyl azodicarboxylate (DAD).^{8,9} However we encountered difficulties when attempting to prepare the 10-aryl-5-deazaflavin derivatives (1) by the methods(b) and (c), because the intermediate 6-(N-arylanilino)uracils were not available by the usual condensation of 6chlorouracils with diphenylamines and because the 6-chloro-5-formylpyrimidines and diphenylamines were unreactive under conventional conditions. Furthermore, the synthetic method (d), consisting of the oxidative coupling of arylbis-(6-anilinouracil-5-yl)methanes (2), gave the corresponding 5deazaflavins (1) in overall low yields based on the starting 6-anilinouracils (3).

We now report a new, general, and convenient synthesis of the 5-deazaflavin derivatives (6), which consists of the condensation of 6-substituted-aminouracils (4) with o-halogenobenzaldehydes (5). This method is noteworthy owing to the

availability of all kinds of 5-deazaflavins, the simplicity of the procedure, and the very high yield of products.

A mixture of 6-*N*-alkyl- or 6-*N*-aryl-aminouracils $(4)^{10}$ (2.5 mmol) and the appropriate *o*-chloro- or *o*-bromobenzaldehydes (5) (3.0 mmol) in dimethylformamide (DMF, 20 ml) was heated under reflux for 3-5 h. Concentration of

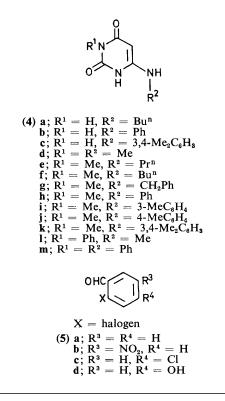
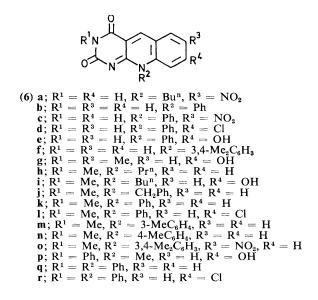



Table 1. Formation of 5-deazaflavins (6) and their C-5 proton chemical shifts.

Starting materials	Product	Yield (%)	M.p.ª /°C	Recrystn. solvent	δ (CF ₃ CO ₂ H)
(4a) + (5b)	(6a)	80	290	EtOH	9.96
(4b) + (5a)	(6b)	82	>330	DMF	9.91
(4b) + (5b)	(6c)	90	>330	DMF-EtOH	10.05
(4b) + (5c)	(6d)	95	>330	DMF	9.87
(4b) + (5d)	(6e)	79	>330	EtOH	9.66
(4c) + (5a)	(6f)	80	>330	EtOH	9.86
(4d) + (5d)	(6g) ⁸	83	>330	AcOH	9.56
(4e) + (5a)	(6h) ⁸	78	267	EtOH	9.80
(4f) + (5d)	(6i)	92	>330	DMF	9.6 1
(4g) + (5a)	(6j)	73	>330	EtOH	9.94
(4h) + (5a)	(6k) ⁹	95	>330	DMF	9.92
(4h) + (5c)	(61) ⁹	92	>330	DMF	9.93
(4i) + (5a)	(6m)	82	>330	EtOH	9.96
(4i) + (5a)	(6n) ⁹	89	>330	DMF	9.97
(4k) + (5b)	(60)	73	>330	DMF-EtOH	9.97
(41) + (5d)	(6p)	74	>330	DMF	9.60
(4m) + (5a)	(6q)	81	>330	DMF	10.00
(4m) + (5c)	(6r)	87	>330	DMF-EtOH	9.90

^aAll compounds were obtained as yellow needles or prisms.

the solution under reduced pressure and recrystallization of the residue from appropriate solvents (indicated in Table 1) gave the corresponding 5-deazaflavins (6) via dehydration and dehydrochlorination. The structures of the products (6) were established from satisfactory analytical and spectral data, and in particular, by the presence of the characteristic C-5 proton resonance at δ 9.6–10.1 in the ¹H n.m.r. spectra for compounds (6) (see Table 1).

Received, 21st June 1982; Com. 713

References

- 1 P. Hemmerich, V. Massey, and H. Fenner, FEBS Lett., 1977, 84, 5 and references cited therein.
- T. C. Bruice, in 'Progress in Bioorganic Chemistry,' eds. E. T. Kaiser and F. J. Kézdy, Wiley, New York, 1976, Vol. 4, p. 56.
- 3 L. D. Eirich, G. D. Vogel, and R. S. Wolfe, Biochemistry, 1978, 17, 4583; W. T. Ashton, R. D. Brown, F. Jacobson, and C. Walsh, J. Am. Chem. Soc., 1977, 101, 4419. 4 F. Yoneda, K. Mori, S. Matsuo, Y. Kadokawa, and
- Y. Sakuma, J. Chem. Soc., Perkin Trans. 1, 1981, 1836.
- 5 F. Yoneda and Y. Sakuma, Chem. Lett., 1978, 1177.
- 6 D. E. O'Brien, L. T. Weinstock, and C. C. Cheng, J. Heterocycl. Chem., 1970, 17, 99.
- 7 F. Yoneda, Y. Sakuma, S. Mizumoto, and R. Ito, J. Chem. Soc., Perkin Trans. 1, 1976, 1805.
- 8 F. Yoneda, K. Mori, Y. Sakuma, and H. Yamaguchi, J. Chem. Soc., Perkin Trans. 1, 1980, 978.
- 9 F. Yoneda, K. Tsukuda, K. Shinozuka, F. Hirayama, K. Uekama, and A. Koshiro, Chem. Pharm. Bull., 1980, 28, 3049.
- 10 H. Goldner, G. Dietz, and E. Carstens, Liebigs Ann. Chem., 1966, 691, 142; F. Yoneda, K. Shinozuka, K. Tsukuda, and A. Koshiro, J. Heterocycl. Chem., 1979, 16, 1365.